A Novel Open Source Morphology Using GPU Processing With LTU-CUDA
نویسندگان
چکیده
Ranganathan Engineering College, Coimbatore-641109, India [email protected] Abstract: A mathematical morphology is used as a tool for extracting image components that are useful in the representation and description of region shape. The mathematical morphology operations of dilation, erosion, opening, and closing are important building blocks of many other image processing algorithms. The data parallel programming provides an opportunity for performance acceleration using highly parallel processors such as GPU. NVIDIA CUDA architecture offers relatively inexpensive and powerful framework for performing these operations. However the generic morphological erosion and dilation operation in CUDA NPP library is relatively naive, but it provides impressive speed ups only for a limited range of structuring element sizes. The vHGW algorithm is one of the fastest for computing morphological operations on a serial CPU. This algorithm is compute intensive and can be accelerated with the help of GPU. This project implements vHGW algorithm for erosion and dilation independent of structuring element size has been implemented for different types of structuring elements of an arbitrary length and along arbitrary angle on CUDA programming environment with GPU hardware as GeForce GTX 480. The results show maximum performance gain of 20 times than the conventional serial implementation of algorithm in terms of execution time.
منابع مشابه
Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...
متن کاملPaper: Togpu: Automatic Source Transformation from C++ to CUDA using Clang/LLVM
Parallel processing using GPUs provides substantial increases in algorithm performance across many disciplines including image processing. Serial algorithms are commonly translated to parallel CUDA or OpenCL algorithms. To perform this translation a user must first overcome various GPU development entry barriers. These obstacles change depending on the user but in general may include learning t...
متن کاملParallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach
There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...
متن کاملParallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملSailfish: A flexible multi-GPU implementation of the lattice Boltzmann method
We present Sailfish, an open source fluid simulation package implementing the lattice Boltzmann method (LBM) on modern Graphics Processing Units (GPUs) using CUDA/OpenCL. We take a novel approach to GPU code implementation and use run-time code generation techniques and a high level programming language (Python) to achieve state of the art performance, while allowing easy experimentation with d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014